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Pages 1–7

Better Kernels and Coding Schemes Lead to
Improvements in SVM-based Secondary Structure
Prediction
George Karypis
Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455

ABSTRACT
Motivation: The accurate prediction of a protein’s secondary struc-
ture plays an increasingly critical role in predicting its function and
tertiary structure, as it is utilized by many of the current state-of-
the-art methods for remote homology, fold recognition, and ab initio
structure prediction.
Methods: We developed a new secondary structure prediction algo-
rithm called YASSPP that uses a pair of cascaded models construc-
ted from two sets of binary SVM-based models. YASSPP uses an
input coding scheme that combines both position-specific and non-
position specific information, utilizes a kernel function designed to
capture the sequence conservation signals around the local window
of each residue, and constructs a second-level model by incorpora-
ting both the three-state predictions produced by the first-level model
and information about the original sequence.
Results: Experiments on three standard datasets (RS126, PB513,
and EVA common subset 4) show that YASSPP is capable of produ-
cing the highest Q3 and SOV scores than that achieved by existing
widely used schemes such as PSIPRED, SSPro 4.0, SAM-T99sec, as
well as previously developed SVM-based schemes. On the EVA data-
set it achieves a Q3 and SOV score of 79.34% and 78.65%, which
are considerably higher than the best reported scores of 77.64% and
76.05%, respectively.
Availability: The YASSPP prediction server is available at
http://bioinfo.cs.umn.edu/yasspp.
Contact: karypis@cs.umn.edu.

1 INTRODUCTION
Breakthroughsin large-scalesequencinghave led to a surge in the
availableproteinsequenceinformationthathasfar out-strippedour
ability to experimentallycharacterizetheir functionsand tertiary
structures.As aresult,researchersareincreasinglyrelyingoncom-
putational techniquesto classify thesesequencesinto functional
andstructuralfamiliesandto predicttheir threedimensionalstruc-
ture.Algorithms for proteinsecondarystructurepredictionplay an
essentialrole in many of thesetechniques[16]. Thiswasevidentin
themostrecentCASP6competition,in which predictedsecondary
structureinformation wasan integral partof the bestperforming
schemesfor the comparative modeling,fold-recognition,andnew
fold predictiontasks.

A large number of secondarystructureprediction algorithms
have been developed,andover theyears,their predictionaccuracy
hasbeencontinuouslyimproved. Many algorithmscannowadays
achieve a sustainedthree-stateprediction accuracy in the range
of 77%–78%,and combinationsof them can sometimesfurther

improvetheaccuracy byoneto twopercentagepoints.Theseimpro-
vementshave beenwell-documented[26], andareattributedto an
ever-expandingsetof experimentallydeterminedtertiarystructures,
theuseof evolutionaryinformation,andto algorithmicadvances.

Thesecondarystructurepredictionapproachesin usetoday, can
be broadlycategorizedinto threegroups:neighbor-based,model-
based, and meta-predictor-based. The neighbor-basedapproa-
ches[27, 5, 11] predict the secondarystructureby identifying a
setof similar sequence-fragmentswith known secondarystructure;
the model-basedapproaches[24, 10, 21, 19], employsophistica-
tedmachinelearningtechniquesto learna predictivemodeltrained
onsequencesof known structure;whereasthemeta-predictor-based
approaches[4, 18] predictthestructureby combiningthepredicti-
onsproducedby differentneighborand/ormodel-basedtechniques.
Thenearreal-timeevaluationof many of thesemethodsperformed
by the EVA server [23] shows that the model-basedapproaches
tendto producestatisticallybetterresultsthanthe neighbor-based
schemes,which is further improved by someof the morerecently
developedmeta-predictor-basedapproaches[18].

Historically, themostsuccessfulmodel-basedapproachessuchas
PHD [24], PSIPRED[10], andSSPro[19], werebasedon neural
network (NN) learning techniques.However, in recentyears, a
numberof researchershavealsodevelopedsecondarystructurepre-
diction algorithmsbasedon supportvectormachines(SVM) [30].
Eventhoughtheinitial performanceof theseschemeswasnotcom-
petitivewith thatachieved bythebestNN-basedschemes[8], recent
advanceshave lead to the developmentof algorithms[14, 31, 6]
whoseperformanceis comparableandsometimesbetterthanthat
achieved byNN-basedschemes.

In this paperwe presenta secondarystructurepredictionalgo-
rithm calledYASSPPthat further improves theperformanceachie-
ved by SVM-basedmethods.YASSPPemploysthe commonfra-
mework for secondarystructurepredictionthat is basedon a pair
of cascadedmodels. The first-level model, often referred to as
sequence-to-structure model,computesa three-statepredictionfor
each position by taking into accountthe sequenceinformation
aroundthat position,whereasthe second-level model,often refer-
redto asstructure-to-structure model,computesthefinal secondary
structureassignmentby taking into accountthe predictionscom-
puted by the first model. Each of thesemodels is constructed
usingthreesetsof binarySVM classifiersemployinga one-vs-rest
learningapproach.

YASSPPimproves predictionperformancethroughthe incorpo-
ration of a numberof new ideas. It usesan exponentialkernel
function derived by combininga normalizedsecondorder kernel
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in which thecontribution of eachpositionis inverselyproportional
to its distancefrom the centralresidue.It constructsthe second-
level modelby incorporatingboththepredictedsecondarystructure
aswell asinformationfrom theoriginal input sequence; thus,using
whatcanbeconsideredasasequence+structure-to-structure model.
It usesa codingschemefor the input sequencethat in additionto
positionspecificinformationobtainedusingPSI-BLAST [1], also
incorporatesnon-positionspecificinformation obtainedusing the
BLOSUM62[7] scoringmatrix. Finally, YASSPPusesa lossfunc-
tion thatassignsdifferentmisclassificationcoststo eachsecondary
structurestatebasedon its relative sizein the training set, which
accountsfor theunbalancedclass-sizedistribution.

Experimentson the widely usedRS126andPB513benchmark
datasetsandon a datasetobtainedfrom the EVA server (common
subset#4) show that YASSPPis consistentlymore accuratethan
existing state-of-the-artSVM- andNN-basedsecondarystructure
predictionalgorithms.On PB513YASSPPachieves Q 3 andSOV
scoresof 77.78%and74.99%,respectively, whereason the EVA
datasetits Q3 and SOV scoresare 79.34%and 78.65%, respec-
tively. Theselatter resultsrepresentan improvementof 2.2% and
3.4%, respectively, over thatachieved by thenext bestperforming
algorithm.

2 METHODS AND ALGORITHMS

2.1 SecondaryStructur e Definition
Thesecondarystructureinformationfor eachresiduewasobtained
using the DSSP[12], which assignseachresidueto oneof eight
structuralclasses:H (α-helix), G (310-helix), I (π-helix), E (β-
strand),B (isolatedβ-bridge), T (turn), S (bend), and – (other).
Weuseareductionschemethatconvertsthis eight-stateassignment
down to threestatesby assigningH andG to thehelix state(H), E
andB to a the strandstate(E), andtherest(I, T, S, and–) to a coil
state(C). Thiseight-to-threestatereductionschemeis usedby most
secondarystructurepredictionmethods[10, 23] andallows us to
compareYASSPP’s resultswith thoseproducedby otherschemes.

2.2 PSSMRepresentation& Generation
Thepositionspecificscorematrix of a sequenceX of lengthn is
representedby a n × 20 matrix. The rows of this matrix corre-
spondto the variouspositionsin X andthe columnscorrespond
to the 20 distinct aminoacids.The position specificscorematri-
cesusedby YASSPPwere generatedusing the latest versionof
the PSI-BLAST algorithm [1] (available in NCBI’s blast release
2.2.10), and were derived from the multiple sequencealignment
constructedafterfive iterationsusingane valueof 10−2 for initial
andsubsequentsequenceinclusions(i.e., we usedblastpgp -j

5 -e 0.01 -h 0.01). ThePSI-BLASTwasperformedagainst
NCBI’snr databasethatwasdownloadedin Novemberof 2004and
contained2,171,938sequences.

2.3 Algorithm
The overall structureof YASSPPis similar to that usedby many
existing secondarystructureprediction algorithmslike PHD and
PSIPRED.It consistsof two models,referredto asL1 andL2, that
areconnectedtogetherin acascadedfashion.TheL 1 modelassigns
to eachpositiona weight for eachof the threesecondarystructure
elements{C, E, H}, whichareprovidedasinputto theL2 modelto
predicttheactualsecondarystructureclassof eachposition.TheL 1

modeltreatseachpositionof thesequenceasanindependentpredic-
tion problem,andthepurposeof theL2 modelis to determinethe
structureof a positionby taking into accountthe predictedstruc-
ture of adjacentpositions.YASSPPsplits the training setequally
betweentheL1 andL2 models.

Both the L1 andL2 modelsconsistof threebinary SVM clas-
sifiers ({MC/C̄

1 , M
E/Ē
1 , M

H/H̄
1 } and {M

C/C̄
2 , M

E/Ē
2 , M

H/H̄
2 },

respectively) trainedto predict whetheror not a position belongs
to a particular secondarystructurestateor not (i.e., one-vs-rest
models).The output valuesof the L1 modelare the raw functio-
nal outputsof thethesebinaryclassifiers(i.e., M C/C̄

1 , M
E/Ē
1 , and

M
H/H̄
1 ), whereasthepredictedsecondarystateof theL 2 modelcor-

respondsto thestatewhosecorrespondingbinaryclassifierachieves
themaximumvalue.Thatis,

Predictedstate= argmax
x∈{C,E,H}

(M
x/x̄
2 ). (1)

During training, for eachposition i that belongsto oneof the
threesecondarystructurestates(i.e., classes)of a sequenceX , the
input to theSVM is a (2w + 1)-lengthsubsequenceof X centered
at positioni. The parameterw determinesthe lengthof the local
environmentaroundtheith sequencepositionto beusedwhile buil-
ding themodel,andits propervalueis determinedexperimentally.
YASSPPusesthe samevalueof w for all binary classifiersused
by the L1 andL2 models.We will refer to thesesubsequences as
wmers. Duringsecondarystructureprediction,asimilarapproachis
usedto constructa wmer aroundeachpositioni of a sequenceX
with unknown secondarystructure(we will refer to suchsequence
asaquery sequence).

2.4 Input SequenceCoding
Weusedtwo differentschemesto codethewmersfor theL 1 model
andtwo differentschemesfor theL2 model.

L1’sfirst codingschemerepresentseachwmer x asa(2w+1)×
20 matrixPx, whoserowsareobtaineddirectlyfrom therowsof the
PSSMfor eachposition.Thesecondcodingschemeaugmentsthis
PSSM-basedrepresentationbyaddinganother(2w+1)×20 matrix
Bx, whoserowsaretherowsof theBLOSUM62matrix correspon-
ding to eachposition’s aminoacid.We will refer to theseastheP
andthePB codingschemes,respectively.

The primary motivation behindthe secondcodingschemeis to
improve theclassificationaccuracy (in conjunctionwith thekernel
functiondescribedlater) in casesin which thequerysequencedoes
nothave asufficiently largenumberof homologoussequencesin nr,
and/orPSI-BLASTfailed to computea correctalignmentfor some
segmentsof thesequence.By augmentingthewmer codingscheme
to containbothPSSM-aswell asBLOSUM62-basedinformation,
theSVM canlearna modelthat is alsopartially basedon thenon-
position specificinformation. This information will remainvalid
even in casesin which PSI-BLASTcouldnot or failed to generate
correctalignments.

The two codingschemesfor theL2 modelarederived from the
correspondingcodingschemesof L 1 by including the predictions
computedby L1’s threebinaryclassifiers.This is doneby adding
another(2w + 1) × 3 matrix Sx, whosecolumnsstore the raw

functionalpredictionsof theM
C/C̄
1 , M

E/Ē
1 , andM

H/H̄
1 models,

respectively. Thus,thefirst codingschemeconsistsof matricesP x

andSx, andthesecondcodingschemeconsistsof matricesP x, Bx,
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andSx. Wewill referto theseasthePS andthePBS codingsche-
mes,respectively. Note that the informationcapturedby thesetwo
codingschemesaredifferentthanthoseusedby existingsecondary
structurepredictionalgorithms,asthelatter consistonly of Sx and
ignoreany informationabouttheoriginalsequence.

For eachcodingschemetherows of thematricesthatcorrespond
to wmer positionsextendingpastthebeginningand endof theinput
sequencearesetto zero.

Even thougheachcodingschemeof L 1 canbe combinedwith
eitherof thetwocodingschemesfor L2, inYASSPPweinvestigated
only two combinations:P with PS, andPB with PBS, whichwill
bedenotedasP + PS andPB + PBS, respectively.

2.5 Kernel Functions
In developingYASSPP, aconsiderableeffort wasspentin designing
andevaluatingvariouskernelfunctionsfor useby thebinarySVM
classifiersof theL1 andL2 models.This effort led usto construct
kernelfunctionsthatarederived bycombininganormalizedsecond-
orderkernel, in which the contribution of eachpositiondecreases
basedon how far away it is from thecentralresidue,alongwith an
exponentialfunction.

Thegeneralstructureof thekernelfunctionsthatweusedis given
by

K(x, y) = exp

 

1.0 +
K1(x, y)

p

K1(x, x)K1(y, y)

!

, (2)

wherex andy aretwo wmers, K1(x, y) is given by

K1(x, y) = K
cs
2 (x, y) + (K

cs
2 (x, y))2, (3)

andKcs
2 (x, y) is akernelfunctionthatdependsonthechoiceof the

particularinput codingschemecs, andfor eachoneof theP , PB,
PS, andPBS codingschemesis definedasfollows:

K
P
2 (x, y) =

j=w
X

j=−w

Px(j, :)P t
y(j, :)

1 + |j|
, (4)

K
PB
2 (x, y) = K

P
2 (x, y) +

j=w
X

j=−w

Bx(j, :)Bt
y(j, :)

1 + |j|
, (5)

K
PS
2 (x, y) = K

P
2 (x, y) + 50

j=w
X

j=−w

Sx(j, :)St
y(j, :)

1 + |j|
, (6)

K
PBS
2 (x, y) = K

PB
2 (x, y) + 50

j=w
X

j=−w

Sx(j, :)St
y(j, :)

1 + |j|
. (7)

Thevarioustermsinvolving therows of theP , B, andS matrices
(e.g., Px(j, :)P t

y(j, :)) correspondto the dot-productsof the rows
correspondingto thejth positionsof thewmers(indexed from −w
to +w).

A numberof observationscanbemadeby analyzingthevarious
kernelfunctionsinvolved in the above definitions.First, by linea-
rizing matricesP , B, andS, we canseethat Kcs

2 (x, y) is a linear
functioncorrespondingto thedot-productof thelinearizedrepresen-
tation of x andy. Dependingon thechoiceof thecodingscheme,
thesedot-productsinvolve 20(2w + 1), 40(2w + 1), 23(2w + 1),
or 43(2w + 1) dimensionvectors.Second,thecontribution of each
wmer position in K

cs
2 (x, y) decreaseslinearly with respectto its

distancefrom the centralresidue(i.e., the residuethat definesthe
classor whoseclassneedsto bepredicted).This wasmotivatedby
the fact that thesecondarystructurestateof a residueis in general
moredependentonthenearbysequencepositionsthanthepositions
that are further away [3]. Third, the contribution of the S matrix
in the kernelsusedfor the L2 model (i.e., PS andPBS coding
schemes)is weightedhigher thanthe correspondingcontributions
of theP andB matrices.This is doneby scalingits weightby 50.
This valuewasdeterminedexperimentallyby testinga numberof
scalingfactorsin the set{1, 5, 25, 50, 75, 100}. Note that a simi-
lar optimizationcanbe performedfor assigningdifferent weights
to thecontributionsof theP andB matrices.However, we did not
performsuchan optimization.Fourth, sinceKcs

2 (x, y) is a linear
function, theK1(x, y) is a kernelcorrespondingto a second-order
polynomial. This allows the kernel function to capturepairwise
dependenciesamongthe residuesusedat variouspositionswithin
eachwmer, andwe found that this leadsto betterresultsover the
linearfunction.Thisobservationis alsosupportedby otherresearch
aswell [31]. Fifth, theexponentialstructureof K(x, y) allow us to
capturehighly non-linearrelations.

2.6 UnbalancedClasses
In theabsenceof well-separableclasses,SVM learnsa modelthat
minimizesthenumberof examplesthatgetmisclassified(i.e.,num-
ber of errors). In casesin which thereis a large differencein the
sizesof the positive and negative classes,this minimization can
potentiallybe achieved by learninga modelthat is biasedtowards
the largest class.When the outputsof suchbinary SVM classi-
fiers areusedto build a multi-classclassifier, as it is the casefor
the three-statesecondarystructureprediction problem,suchbiases
maydecreasetheoverall classificationperformance.Unfortunately,
in the context of secondarystructureprediction,dueto the higher
frequency of the coil stateover the strandand helix states,such
unbalancedclassscenariosdooccur.

One wayof overcomingthis problemis to convert theraw func-
tionaloutputsof thebinarySVM classifiersinto probabilityvalues.
A popularmethodusedfor achieving this is to fit theoutputof the
SVM to asigmoidfunction,andusethisfit to computeprobabilities
[29]. Our experimentationwith this approachdid not improve the
overall resultsandfor this reasonwe adaptedanalternatescheme
that associatesdifferent misclassificationcoststo the examplesof
thethreeclasses;thus,trying to prevent theSVM from introducing
aclass-sizebiasin thefirst place.

Themisclassificationcostassignedto eachclassis computedas
follows.Letno

i , bethe(observed)numberof residuesatstatei in the
trainingset,wherei ∈ {C, E, H}, andlet N bethetotalnumberof
residesover thethreestates.Theeffective numberof residuesn e

i at
statei is definedto be

ne
i = no

i +
N

3
. (8)

This definition includesboth the observed numberof residuesas
well asthe expectednumberof residuesN/3, underthe assump-
tion that all threestatesoccurwith the sameprobability. Thenthe
misclassificationcostmci associatedwith statei is given bysolving

ne
i mci =

X

j �=i

ne
j ⇒ mci =

1

ne
i

X

j �=i

ne
j . (9)
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This ensuresthat theoverall costof thepositive class(i.e., number
of instancesmultipliedby themisclassificationcostfor thatclass)is
equalto theoverall costof thenegativeclass.

3 EXPERIMENTAL DESIGN

3.1 DatasetDescription
Theperformanceof YASSPPwasevaluatedon threedifferentdata-
sets.The first is the RS126dataset,originally developedby Rost
and Sander[24], which contains126 sequences.The secondis
the CB513dataset,originally developedby Cuff andBorton [4],
which contains513 non-homologoussequences1. The third is a
datasetobtainedfrom theEVA server [23], whichcomparesanum-
berof predictionserversusingthesequencesdepositedin thePDB
every week. In particular, we usedthe set labeled“common4”
(http://cubic.bioc.columbia.edu/eva/sec/setcom4.html),whichcon-
tains 165 sequences, most of which have beentestedagainsta
numberof differentsecondarystructurepredictionmethods.Wewill
referto thisdatasetasEVAc4.

Thesethree datasetswere usedto experimentallyevaluatethe
secondarystructureprediction performanceof YASSPPas fol-
lows. First, theRS126andCB513datasetswereusedto studythe
impactof its variousinput codingschemes,kernel/learningchoi-
ces,andoptimize its parameters.Second,the EVAc4 datasetwas
usedto assessYASSPP’s performanceon an independentdataset
andcompareit againstthatachieved byotherpopularalgorithms.

3.2 Prediction Accuracy Assessment
The predictionaccuracy is assessedusing four widely usedper-
formancemeasures.Thesearethe three-stateper-residueaccuracy
(Q3), the segmentoverlapmeasure(SOV), theper-stateMatthews
correlationcoefficients (CC , CE , CH ), and the information index
(Info). Thesemeasuresare amongthe most widely usedperfor-
manceassessment measuresfor secondarystructureprediction,and
becausethey arealsoreportedby theEVA serverwecanmakedirect
comparisonswith existingschemes.

Q3 is ameasureof theoverall three-statepredictionaccuracy and
is definedas the percentageof residueswhosestructuralclassis
predictedcorrectly [24]. The SOV is a segment-level measureof
theoverall predictionaccuracy. Thismeasureis initially introduced
in [25] andsubsequently refinedin [28]. TheSOV valuesproduced
by thesetwo definitionsaredifferentandcannotbedirectlycompa-
red.For our assessment purposes,weusethemostrecentdefinition
of the SOV measure(also referredto as SOV99), as it allows us
to perform comparisonswith recentschemesandwith the results
reportedby theEVA server. Matthews correlationcoefficients[15]
provide a per-statemeasureof predictionperformanceand for a
particularstatei ∈ {C, E, H} it is given by

Ci =
pini − uioi

p

(p + i + ui)(pi + oi)(ni + ui)(ni + oi)
, (10)

wherepi is thenumberof correctlypredictedresiduesin statei, n i is
thenumberof residuesthatwerecorrectlyrejected(truenegatives),
ui is the numberof residuesthat were incorrectly rejected(false
negatives),andoi is the numberof residuesthat were incorrectly
predictedto be in statei (falsepositives).Finally, the information

1 Both the RS126 and CB513 datasets can be obtained from
http://www.compbio.dundee.ac.uk/˜www-jpred/data/predres/.

index [24] is an entropy-relatedmeasurethat merges the obser-
ved andthepredictedstate-specificaccuracy measuresinto a single
numberwith all theseelementscontributing equally.

3.3 SVM Training & Testing

WeusethepubliclyavailablesupportvectormachinetoolSVM light

[9] which implementsan efficient soft margin optimizationalgo-
rithm. We use the default parametersfor solving the quadratic
programmingproblem, and we usea regularizationparameterof

C = 1/e2 = 0.1353, which is thedefaultvalueusedby SVM light

andcomputedastheaverageof 1/(||x|| 2).
We usedtwo different approachesto predict thesethree data-

sets.In the caseof RS126andCB513,we followed a seven-fold
cross-validationframework, in which eachoneof the seven folds
was predictedusing a model that wasbuilt on the remainingsix
folds. This approachallowed us to directly compareour results
againstthoseobtainedby earliermethods[8, 14] thatusedasimilar
seven-foldcross-validationapproach.

In the caseof the EVAc4, we useda model that was trained
on a setof proteinsderived from SCOP1.67 [17] as follows. We
usedAstral [2] to obtaina setof proteindomainswhosepairwise
sequenceidentitywaslessthan25%.Thisresultedin asetof 4,993
domainsthatbelongto 3,971proteins.This setwasfurther pruned
by removing all proteinsthat were identified to have greaterthan
a 25% identity with at leastoneof the sequencesin EVAc4. This
pruningstepleft 3,223proteins,whichwasusedto train YASSPP.

4 RESULTS

4.1 RS126and CB513Datasets
We investigatethe impactof YASSPP’s parametersby performing
a numberof experimentsin which we (i) vary the length of the
wmer, (ii) disablecertainaspectsof thekernelfunctions,(iii) eli-
minatethe class-sizesensitive misclassificationcosts,and(iv) use
differentinput codingschemes.Thekey resultsof thesestudiesare
summarizedin thesubsequentsections.

4.1.1 Window Length. Table4.1.1showstheperformanceachie-
ved by YASSPPfor different lengthwmersrangingfrom nine to
nineteenresidueslong (w =4–9). Theseresults show that the
bestperformanceis achieved for wmersthat are13 or 15 residues
long, which is in agreementwith the resultsreportedin previous
studies.The resultsalso illustrate that as the length of the win-
dow increases,theperformanceof YASSPP−pw reducesfasterthan
thatof YASSPP, verifying the initial motivationbehindYASSPP’s
distance-sensitivepositionweightingscheme.

4.1.2 Kernel & Learning Parameters. Table 4.1.2 shows the
impact to YASSPP’s performanceby disabling certain elements
of its kernel function and by eliminating the class-sizesensitive
misclassificationcosts.Theseresultsshow that eachoneof these
parametersleadto an improvementin the overall predictionaccu-
racy acrossthe two datasets.Among them, the gainsachieved by
usingacodingschemefor theL2 modelthatincorporatestheamino
acidcompositionof eachwmer arethehighest,whereasthegains
achieved by the distance-sensitive positionweightingschemesare
thelowest.

4.1.3 Input Sequence Coding. Table4.1.3showstheeffectof the
differentinputcodingschemestoYASSPP’soverallperformance.In

4



Better Kernels and Coding Schemes Improve Secondary Structure Prediction

Table1. Effectof thewindow lengthontheperformanceof YASSPPfor the
RS126dataset.

YASSPP YASSPP−pw

w Q3 SOV CC CE CH Q3 SOV CC CE CH

4 76.67 70.79 0.54 0.62 0.70 76.65 70.56 0.54 0.63 0.70
5 76.94 70.97 0.55 0.63 0.71 76.76 70.78 0.54 0.63 0.70
6 77.08 71.20 0.55 0.62 0.71 76.70 70.66 0.54 0.63 0.70
7 77.08 71.27 0.55 0.62 0.71 76.54 70.47 0.54 0.63 0.70
8 76.98 71.14 0.55 0.63 0.71 76.29 70.15 0.53 0.62 0.70
9 76.89 71.01 0.54 0.63 0.71 76.07 69.73 0.53 0.62 0.70

The resultslabeledYASSPPareobtainedusingthe kernelfunctionsas describedin
Section2.5,whereastheYASSPP−pw wereobtainedbyweightingeachpositionof the
wmer equallyin Equations4–7(i.e., nodistance-sensitivedecreaseof eachposition’s
contribution).The reportedvaluescorrespondto the averagesoverthe 126sequences
obtainedusingboththeP + PS andPB + PBS inputcodingschemes.

Table 2. Effect of variouskerneland learningparameterson the perfor-
manceof YASSPP.

RS126Dataset

Scheme Q3 SOV Info CC CE CH

YASSPP 77.58 72.04 0.370 0.560 0.628 0.713
YASSPP−pw 77.24 71.63 0.360 0.552 0.626 0.710
YASSPP−cw 77.00 70.82 0.362 0.551 0.622 0.706
YASSPP−P/PB 76.64 71.09 0.354 0.539 0.626 0.704

CB513Dataset

Scheme Q3 SOV Info CC CE CH

YASSPP 77.65 74.62 0.393 0.575 0.638 0.703
YASSPP−pw 77.48 74.35 0.388 0.572 0.630 0.699
YASSPP−cw 77.58 74.54 0.390 0.578 0.631 0.696
YASSPP−P/PB 77.07 73.95 0.385 0.566 0.628 0.694

YASSPP−pw , YASSPP−cw , and YASSPP−P/P B are derived from YASSPPby
disablingsomeof its featuresasfollows.YASSPP−pw doesnotusedistance-sensitive
position weighting; YASSPP−cw does not use class-sizesensitive misclassifica-
tion costs(i.e., the misclassificationcosts for all binary classifierswas one); and
YASSPP−P/P B usesonly theS matrix whenconstructingthe binaryclassifiersfor
the L2 modelanddoesnot useeither the PSSM-basedcodingor the BLOSUM62-
basedcoding.For YASSPP−pw andYASSPP−cw thereportedvaluescorrespondto
theaveragesobtainedusingboththeP +PS andPB + PBS inputcodingschemes
andw rangingfrom four to nine.ForYASSPP−P/P B thereportedvaluescorrespond
to theaveragesobtainedusingboththeP +S andPB +S inputcodingschemesand
w rangingfrom four to nine.

general,by augmentingthetraditionalinputcodingschemesto also
includenon-positionspecificinformation, we are able to achieve
animprovementin theoverall classificationperformance.However,
this improvementis notuniform acrossthetwo datasetsandperfor-
manceassessmentmeasures,astheP +PS codingschemeachieves
betterSOV, CC , andCE valuesfor theRS126datasetandbetterCE

valuesfor theCB513datasetover thePB + PBS codingscheme.

4.1.4 Comparison with Other Methods. Table 4.1.4 compares
theperformanceachieved by YASSPPwith thatachieved bySVM-
freq [8], SVMpsi [14], andPMSVM [6], threerecentlydeveloped
SVM-basedsecondarystructurepredictionmethods.

From theseresults we can see that both YASSPPP+PS and
YASSPPPB+PBS achievebetterresultsthanany of theotherthree

Table3. Effectof thefeaturespaceontheperformanceof YASSPP.

RS126Dataset

Scheme Q3 SOV Info CC CE CH

YASSPPP+PS 77.03 71.32 0.360 0.548 0.632 0.712
YASSPPPB+PBS 76.85 70.81 0.359 0.546 0.617 0.701

CB513Dataset

Scheme Q3 SOV Info CC CE CH

YASSPPP+PS 77.54 74.32 0.390 0.571 0.642 0.697
YASSPPPB+PBS 77.72 74.98 0.395 0.578 0.633 0.707

YASSPPP+P S usestheP + PS inputcodingandtheYASSPPP B+P BS usesthe
PB + PBS input coding.Thereportedvaluescorrespondto the averagesobtained
overdifferentvaluesof w rangingfromfour to nine.

Table4. Comparativeperformanceof YASSPPagainstothermethods.

RS126Dataset

Scheme Q3 SOV Info CC CE CH

SVMfreq 71.20 — — 0.510 0.520 0.620
SVMpsi 76.10 72.00 — — — —
YASSPPP+PS 77.63 72.25 0.371 0.559 0.637 0.721

ErrSig 0.82 1.34 0.015 0.015 0.022 0.020
YASSPPPB+PBS 77.68 72.04 0.373 0.562 0.617 0.708

ErrSig 0.84 1.34 0.015 0.015 0.023 0.021

CB513Dataset

Scheme Q3 SOV Info CC CE CH

SVMfreq 73.50 — — 0.540 0.530 0.650
SVMpsi 76.60 73.50 — 0.560 0.600 0.680
PMSVM 75.20 — — 0.610 0.610 0.710
YASSPPP+PS 77.53 74.25 0.389 0.571 0.642 0.696

ErrSig 0.41 0.63 0.007 0.007 0.011 0.010
YASSPPPB+PBS 77.78 74.99 0.396 0.580 0.634 0.710

ErrSig 0.42 0.63 0.007 0.007 0.011 0.010

YASSPPP+P S usestheP + PS inputcodingandtheYASSPPP B+P BS usesthe
PB + PBS input coding.Both schemesusewmersof length15 (w = 7). The
resultsfor SVMpsi, SVMfreq,andPMSVM wereobtainedusinga similar seven-fold
crossvalidationapproachandaredirectly comparablewith YASSPP’s results.Entries
markedwith ‘—’ indicateresultsthat couldnot be obtainedfrom the publicationsof
therespectivemethods.
ErrSig is the significantdifferencemargin for eachscore(to distinguishbetweentwo
methods)and is definedas the standarddeviation divided by the squareroot of the
numberof proteins(σ/

√
N ).

schemes.In termsof Q3 and SOV, theseimprovementsare also
statisticallysignificantacrossthe different methodsand datasets.
Amongthesemethods,PMSVM is moresimilar to YASSPPP+PS

asit usesa pair of cascadedmodels,utilizes PSSMs,employsan
input codingschemefor theL1 model that is similar to P . Thus,
theimprovementachieved by YASSPPP+PS over PMSVM canbe
attributedto thedifferentkernelfunction(PMSVM usesanrbf ker-
nel function), theclass-sizesensitivemisclassificationcost,andthe
codingusedfor theL2 model.
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Table5. PerformanceontheEVAc4 dataset.

Scheme Q3 SOV Info CC CE CH

PHDpsi 74.52 70.69 0.346 0.529 0.685 0.665
PSIPRED 77.62 76.05 0.375 0.561 0.735 0.696
SAM-T99sec 77.64 75.05 0.385 0.578 0.721 0.675
PROFsec 76.54 75.39 0.378 0.562 0.714 0.677
1YASSPPP+PS 78.35 77.20 0.407 0.589 0.746 0.708

ErrSig 0.86 1.21 0.015 0.015 0.021 0.017
1YASSPPPB+PBS 79.34 78.65 0.419 0.608 0.747 0.722

ErrSig 0.82 1.16 0.015 0.015 0.021 0.016

SCRATCH 75.75 71.38 0.357 0.545 0.690 0.659
2YASSPPP+PS 78.39 77.69 0.406 0.586 0.750 0.711

ErrSig 0.97 1.36 0.016 0.017 0.023 0.018
2YASSPPPB+PBS 79.31 78.75 0.416 0.602 0.751 0.722

ErrSig 0.94 1.29 0.016 0.017 0.023 0.018

SSPro4 77.96 72.73 0.385 0.559 0.711 0.696
3YASSPPP+PS 79.21 78.60 0.418 0.590 0.749 0.723

ErrSig 1.19 1.67 0.021 0.023 0.030 0.022
3YASSPPPB+PBS 80.03 79.00 0.430 0.605 0.751 0.736

ErrSig 1.18 1.68 0.022 0.024 0.030 0.022

SABLE2 76.85 73.55 0.376 0.546 0.725 0.682
4YASSPPP+PS 78.70 78.09 0.417 0.596 0.766 0.715

ErrSig 1.00 1.42 0.018 0.018 0.025 0.019
4YASSPPPB+PBS 79.85 79.71 0.432 0.615 0.768 0.730

ErrSig 0.97 1.39 0.018 0.019 0.025 0.019

YASSPPP+P S usestheP + PS inputcodingandtheYASSPPP B+P BS usesthe
PB + PBS inputcodingandwereobtainedusingw = 7 (i.e., wmersof size15).
The 1YASSPPare the averagesover the set of sequencesin commonwith PHDpsi,
PSIPRED,SAM-T99sec,andPROFsec.The 2YASSPParethe averagesoverthe set
of sequencesin commonwith SCRATCH. The 3YASSPParetheaveragesovertheset
of sequencesin commonwith SSPro4.The 4YASSPParetheaveragesoverthesetof
sequencesin commonwith SABLE2.

4.2 EVAc4 Dataset
Table4.2 comparesthe performanceachieved by YASSPPagainst
that achieved by PHDpsi[21], PSIPRED[10], SAM-T99sec[13],
PROFsec[22], SCRATCH [19], SSPro4[19], andSABLE2 [20].
Theseschemesrepresentsomeof the best performing schemes,
currentlyevaluatedby theEVA server, andtheir resultswereobtai-
ned directly from EVA. SinceEVA did not useall the methods
to predict all the sequencesof EVAc4, Table 4.2 presentsfour
different setsof resultsfor YASSPPP+PS andYASSPPPB+PBS

(indicatedby thesuperscripts1–4),eachobtainedby averagingthe
variousperformanceassessment methodsover thecommonsubset.
Thesecommonsubsetscontained165, 134,86,and115sequences,
respectively.

Theseresultsshow thatbothYASSPPP+PS andYASSPPPB+PBS

achievebetterpredictionperformancethanthatachieved by any of
the otherschemesacrossall the differentperformanceassessment
measures.In particular, for the entire dataset,YASSPPPB+PBS

achieves a Q3 scoreof 79.34%, which is 2.2% better than the
secondbest-performingschemein termsof Q3 (SAM-T99sec),and
anSOV scoreof 78.65%,which is 3.4%betterthanthesecondbest
performingschemein termsof SOV (PSIPRED).

Comparing the two different versions of YASSPP, we can
see that unlike the results reported earlier for RS126 and

Table 6. Analysisof thecorrectpredictionscomputedby YASSPPP+PS

andYASSPPPB+P BS ontheEVAc4 dataset.

P & PB P & ¬PB ¬P & PB

w C E H C E H C E H

0 0.71 0.75 0.67 0.72 0.73 0.75 0.62 0.67 0.50
1 0.70 0.75 0.66 0.68 0.79 0.74 0.65 0.68 0.51
2 0.69 0.75 0.66 0.67 0.78 0.76 0.67 0.68 0.51
3 0.69 0.75 0.67 0.68 0.76 0.76 0.67 0.67 0.51

Theaverageinformationperpositionof differentlengthwmerscenteredat eachresi-
duethatwascorrectlypredictedby bothmethods(P & PB), correctlypredictedonly
by YASSPPP+P S (P & ¬PB), andcorrectlypredictedonly by YASSPPP B+PBS

(¬P & PB). Theresultsarepresentedbasedon the secondarystructurestateof the
centralresidue.Thew = 0 resultscorrespondto the wmer consistingof just the
positionitself. Theaverageinformationfor longerwmerswascomputedby first com-
putingtheaverageinformationfor eachwmer andthenreportingtheaverageof these
averages.

PB513, YASSPPPB+PBS performs considerably better than
YASSPPP+PS . On theentiredataset,its predictionperformanceis
betterby onepercentagepoint in termsof Q3, andbetterby 1.45
percentagepointsin termsof SOV. To betterunderstandthesource
of this improvement,we analyzedthe two setsof predictionsand
comparedthepositionsthat bothschemespredictedcorrectlywith
thosethat were predictedcorrectly by only one of the two sche-
mes.This comparisonwasperformedby analyzingthe amountof
information that is capturedat eachpositionof the profile, which
provides a quantitative measureof eachposition’s sequencecon-
servation amongthe homologoussequencesusedto construct the
PSSM.For this purposewe usedthe “information per position”
measurethat is computedby PSI-BLASTitself andis storedat the
generatedPSSMfile.

Theresultsof this analysisaresummarizedin Table4.2, which
showstheaverageinformationfor positionsthatwerecorrectlypre-
dictedby bothschemes,positionsthatwerecorrectlypredictedonly
by YASSPPP+PS , andpositionsthatwerecorrectlypredictedonly
by YASSPPPB+PBS . Fromtheseresultswe canseethat theposi-
tions that are predictedcorrectly only by YASSPPPB+PBS have
considerablylessinformationthanthosepredictedcorrectlyby eit-
herYASSPPP+PS aloneor by bothschemes.This is trueacrossall
threesecondarystructurestates,andit is morepronouncedfor heli-
cesandfor coils. Even thoughthereare many reasonswhy such
low information positionscan occur in the PSSM,one reasonis
the lack of a sufficient numberof stronghomologoussequences.
This is indeedthecasefor the165sequencesof theEVAc4 dataset,
for which PSI-BLAST wasunableto find more than20 homolo-
goussequencesfor eachoneof 51querysequences,andcouldfind
at least100 homologoussequencesfor only 68 querysequences.
Thus,byaugmentingtheinputcodingof eachwmer with theBLO-
SUM62 informationof their residues,YASSPPPB+PBS is ableto
correctlypredicta largernumberof suchlow informationpositions,
andtosomedegreeovercometheinformationlossdueto insufficient
numberof homologoussequences.

5 DISCUSSION AND CONCLUSION
This paperpresentedandexperimentallyevaluateda new protein
secondarystructurepredictionalgorithmYASSPPthat usesa pair
of cascadedSVM-basedmodelsto computea three-stateprediction
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(C, E, H). Theexperimentalevaluationusingthreestandardbench-
markdatasetsshowedthatYASSPPiscapableof producingsuperior
predictionperformance,measuredboth in termsof the three-state
predictionaccuracy (Q3) andthesegmentoverlapscore(SOV), than
that achieved by existing widely usedschemessuchasPSIPRED,
SSPro,SAM-T99sec,aswell aspreviously developedSVM-based
schemessuchasSVMfreq andSVMpsi.

Theseimprovement gains can be attributed to three different
factors.First, YASSPPusesa kernel function that is designedto
capturethesequenceconservationsignalsaroundthelocalwindow
of eachresidue.Thiskernelfunctioncapturespositioninformation,
interdependenciesbetweenpositions,anda distance-basedposition
weightingscheme,all of whichhavebeenshown to havesomecor-
relation with secondarystructure[3]. Even thougheachof these
elementshave beenusedin thepastin varioussecondarystructure
predictionalgorithms,to thebestof ourknowledge,YASSPPis the
first schemethatexplicitly couplesall of themtogether.

Second,YASSPP’s L2 model in addition to the three-statepre-
dictions producedby the L1 model also combinesinformation
aboutthe original sequenceas capturedby its PSSM-based(and
BLOSUM62-based)coding. This additional information allows
SVM to explicitly capturedependenciesbetweenaminoacidcom-
position and predictedsecondarystructureof different positions.
Thesedependenciesarecapturedby thesecondorder(Equation3)
and the exponentialkernel (Equation2). The resultsreportedin
Table 4.1.2 show that by doing so, YASSPPis able to achieve
measurablepredictionimprovements.

Third, YASSPPPB+PBS usesaninput codingschemethatcom-
binesboth position-specificandnon-positionspecificinformation
for eachsequence.In doingso,it canlearnamodelthatdependson
informationbeingderived from thesetwo sourcesaswell astheir
interdependencies.Thelatteris achievedvia YASSPP’skernelfunc-
tion. The experimentswith the EVAc4 datasetand their analysis
suggestthat this combinedinput codingschemecanleadto accu-
racy gainsfor sequencepositionswith low informationperposition.
This often occurswhenthereis not a sufficiently large numberof
stronghomologoussequencescoveringthispositionand/orthepro-
file generationalgorithm failed to producecorrectalignmentsfor
them.

ACKNOWLEDGMENT
This work was supportedby NSF EIA-9986042, ACI-9982274,
ACI-0133464,ACI-0312828,IIS-0431135,theArmy High Perfor-
manceComputingResearchCentercontractnumberDAAD19-01-
2-0014,andby theDigital TechnologyCenterat theUniversity of
Minnesota.

REFERENCES
[1]S. F. Altschul, L. T. Madden,A. A. Schffer, J. Zhang,Z. Zhang,W. Miller, and

D. J. Lipman. Gappedblastandpsi-blast:a new generationof proteindatabase
searchprograms.Nucleic Acids Research, 25(17):3389–402, 1997.

[2]J.M. Chandonia,G.Hon,N. S.Walker, L. LoConte,P. Koehl,M. Levitt, andS.E.
Brenner. The astralcompendiumin 2004. Nucleic Acids Research, 32:D189–
D192,2004.

[3]G. E. Crooks,J. Wolfe, andS. E. Brenner. Measurementsof proteinsequence-
structurecorrelations. PROTEINS: Structure, Function, and Genetics, 57:804–
810,2004.

[4]J. A. Cuff andG. J. Barton. Evaluationandimprovement of multiple sequence
methodsfor protein secondarystructureprediction. PROTEINS: Structure,
Function, and Genetics, 34:508–519, 1999.

[5]D. FrishmanandP. Argos. Seventy-five percentaccuracyin proteinsecondary
structureprediction.PROTEINS: Structure, Function, and Genetics, 27:329–335,
1997.

[6]J. Guo, H. Chen, Z. Sun, andY. Lin. A novel methodfor proteinsecondary
structurepredictionusingdual-layersvm andprofiles. PROTEINS: Structure,
Function, and Genetics, 54:738–743, 2004.

[7]S. Henikoff andJ. G. Henikoff. Amino acid subsitutionmatricesfrom protein
blocks.PNAS, 89:10915–10919,1992.

[8]S.HuaandZ. Sun.A novelmethodof proteinsecondarystructurepredictionwith
highsegmentoverlapmeasure:Supportvectormachineapproach.J. Mol. Biol.,
308:397–407, 2001.

[9]T. Joachims. Making large-scalesvm learningpractical. Advances in Kernel
Methods - Support Vector Learning, B. Schlkopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999, 1999.

[10]David T. Jones.Proteinsecondarystructurepredictionbasedonposition-specific
scoringmatricies.J. Mol. Biol., 292:195–202,1999.

[11]K. Joo,J.Lee,S.Kim, I. Kum, J.ee,andS. Lee. Profile-basednearestneighbor
methodfor patternrecognition.J. of the Korean Physical Society, 54(3):599–604,
2004.

[12]W. Kabsch and C. Sander. Dictionary of protein secondarystructure: Pat-
tern recognitionof hydrogen-bonded and geometricalfeatures. Biopolymers,
22:2577–2637,1983.

[13]K. Karplus, C. Barrett, and R. Hughey. Hiddenmarkovmodelsfor detecting
remoteproteinhomologies.Bioinformatics, 14:846–856,1998.

[14]H. Kim andH. Park.Proteinsecondarystructurepredictionbasedonanimproved
supportvectormachineapproach.Protein Engineering, 16(8):553–560,2003.

[15]F. S. Matthews. The structure,function andevolution of cytochromes.Prog.
Biophys. Mol. Biol., 45:1–56,1975.

[16]L. J. McGuffin andD. T. Jones. Benchmarkingsecondarystructureprediction
for fold recognition.PROTEINS: Structure, Function, and Genetics, 52:166–175,
2003.

[17]A. G. Murzin,S.E. Brenner, T. Hubbard,andC. Chothia.Scop:astructuralclas-
sificationof proteinsdatabasefor the investigationof sequencesandstructures.
Journal of Molecular Biology, 247:536–540,1995.

[18]G. Pollastri and A. McLysaght. Porter: a new, accurateserver for protein
secondarystructureprediction.Bioinformatics, 21:1719–1720,2005.

[19]G. Pollastri,D. Przybylski,B. Rost,andP. Baldi. Improvingthepredictionof pro-
teinsecondarystructurein threeandeightclassesusingrecurrentneuralnetworks
andprofiles.PROTEINS: Structure, Function, and Genetics, 47:228–235, 2002.

[20]A. Porollo, R. Adamczak,M. Wagner, and J Meller. Maximum feasibility
approachfor consensusclassifiers:Applicationsto proteinstructureprediction.
In CIRAS, 2003.

[21]D. Przybylski and B. Rost. Alignmentsgrow, secondarystructureprediction
improves.PROTEINS: Structure, Function, and Genetics, 46:197–205, 2002.

[22]B. Rost.unpublished.
[23]B. Rost and V. A. Eyrich. EVA: Large-scaleanalysisof secondarystructure

prediction. PROTEINS: Structure, Function, and Genetics, Suppl.5:192–199,
2001.

[24]B. RostandC. Sander. Predictionof proteinsecondarystructureat betterthan
70%accuracy. J. Mol. Biol., 232:584–599,1993.

[25]B. Rost,C. Sander, andR. Schneider. Redefiningthegoalsof proteinsecondary
structureprediction.J. Mol. Biol., 235:13–26,1994.

[26]BurkhardRost. Review: Proteinsecondarystructurepredictioncontinuesto rise.
Journal of Structural Biology, 2001.

[27]A. A. SalamovandV. V. Solovyev. Proteinsecondarystructurepredictionusing
localalignments.J. Mol. Biol., 268:31–36, 1997.

[28]A. Semla, C. Venclovas, Krzysztof Fidelis, and B. Rost. A modifieddefini-
tion of sov, a segment-basedmeasurefor proteinsecondarystructureprediction
assessment.PROTEINS: Structure, Function, and Genetics, 34:220–223,1999.

[29]A. J. Smola,P. Bartlett, B. Scholkopf,andD. Shuurmans,editors. Probabili-
stic outputs for support vector machines and comparison of regularized likelihood
methods, chapter5, pages61–74. Advancesin Large Margin Classifiers.MIT
Press,2000.

[30]V. Vapnik.Statistical Learning Theory. JohnWiley, New York,1998.
[31]J. J.Ward, L. J. McGuffin, B. F. Buxton,andD. T. Jones.Secondarystructure

predictionwith supportvectormachines.Bioinformatics, 19:1650–1655, 2003.

7


